Peracetic acid: a practical agent for sterilizing heat-labile polymeric tissue-engineering scaffolds.

نویسندگان

  • Suyog Yoganarasimha
  • William R Trahan
  • Al M Best
  • Gary L Bowlin
  • Todd O Kitten
  • Peter C Moon
  • Parthasarathy A Madurantakam
چکیده

Advanced biomaterials and sophisticated processing technologies aim at fabricating tissue-engineering scaffolds that can predictably interact within a biological environment at the cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed before clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam, and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone, a low melting polymer, and employing spores of Bacillus atrophaeus as biological indicators, we compared ethylene oxide, autoclaving and 80% ethanol to a known chemical sterilant, peracetic acid (PAA), for their ability to sterilize as well as their effects on scaffold properties. PAA diluted in 20% ethanol to 1000 ppm or above sterilized electrospun scaffolds in 15 min at room temperature while maintaining nano-architecture and mechanical properties. Scaffolds treated with PAA at 5000 ppm were rendered hydrophilic, with contact angles reduced to 0°. Therefore, PAA can provide economical, rapid, and effective sterilization of heat-sensitive polymeric electrospun scaffolds that are used in tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of common sterilization methods on the structure and properties of poly(D,L lactic-co-glycolic acid) scaffolds.

While methods for the production of scaffolds with the appropriate mechanical properties and architecture for tissue engineering are attracting much attention, the effects of subsequent sterilization processes on the scaffold properties have often been overlooked. This study sought to determine the effects of sterilization with ethanol, peracetic acid, ultraviolet irradiation, and antibiotic so...

متن کامل

Hydroxyapatite-Hardystonite nanocomposite scaffolds prepared by the replacing the polyurethane polymeric sponge technique for tissue engineering applications

Objective (s): Silicate bioceramics containing Zn and Ca like hardystonite (Hr) with chemical formula Ca2ZnSi2O7 has attracted the attention of researchers in biomedical field due to its remarkable biological and mechanical properties. The new generation of bioceramics can applied in bone tissue engineering to substitute with infected bone. However, these zirconium-silicate bioceramics have pro...

متن کامل

Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering.

Small intestine submucosa (SIS) has emerged as one of a number of naturally derived extracellular matrix (ECM) biomaterials currently in clinical use. In addition to clinical applications, ECM materials form the basis for a variety of approaches within tissue engineering research. In our preliminary work it was found that SIS can be consistently and reliably made into tubular scaffolds which co...

متن کامل

Architecture control of three-dimensional polymeric scaffolds for soft tissue engineering. I. Establishment and validation of numerical models.

One of the most important functions of artificial three-dimensional (3D) polymeric scaffolds is to serve as a physical support to provide tissues with an appropriate architecture for in vitro cell culture as well as in vivo tissue regeneration. The production of three-dimensional (3D) polymeric scaffolds with tailored macroporous architecture is thus a crucial step in promoting controlled vascu...

متن کامل

Preparation and characterization of PCL polymeric scaffolds coated with chitosan/ bioactive glass/gelatin nanoparticles using the tips methodology for bone tissue engineering

Objective(s): The present study aimed to prepare polycaprolactone (PCL) scaffolds with high porosity and pore interconnectivity, in order to copy the microstructure of natural bones using the thermally induced phase separation (TIPS) technique. Materials and Methods: The scaffolds were coated with chitosan (CH), bioactive glass (BG), and gelatin nanoparticles (GEL NPs) and assessed using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part C, Methods

دوره 20 9  شماره 

صفحات  -

تاریخ انتشار 2014